\(\int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [51]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 66 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {C x}{a^2}+\frac {(A-5 C) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}+\frac {(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

C*x/a^2+1/3*(A-5*C)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))+1/3*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {3099, 2814, 2727} \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {(A-5 C) \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1)}+\frac {C x}{a^2}+\frac {(A+C) \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(C*x)/a^2 + ((A - 5*C)*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) + ((A + C)*Sin[c + d*x])/(3*d*(a + a*Cos[c +
 d*x])^2)

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3099

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b
*(A + C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e
+ f*x])^(m + 1)*Simp[a*A*(m + 1) - a*C*m + b*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C},
 x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {\int \frac {-a (A-2 C)-3 a C \cos (c+d x)}{a+a \cos (c+d x)} \, dx}{3 a^2} \\ & = \frac {C x}{a^2}+\frac {(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {(A-5 C) \int \frac {1}{a+a \cos (c+d x)} \, dx}{3 a} \\ & = \frac {C x}{a^2}+\frac {(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {(A-5 C) \sin (c+d x)}{3 d \left (a^2+a^2 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(141\) vs. \(2(66)=132\).

Time = 0.54 (sec) , antiderivative size = 141, normalized size of antiderivative = 2.14 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right ) \left (9 C d x \cos \left (\frac {d x}{2}\right )+9 C d x \cos \left (c+\frac {d x}{2}\right )+3 C d x \cos \left (c+\frac {3 d x}{2}\right )+3 C d x \cos \left (2 c+\frac {3 d x}{2}\right )+6 A \sin \left (\frac {d x}{2}\right )-18 C \sin \left (\frac {d x}{2}\right )+12 C \sin \left (c+\frac {d x}{2}\right )+2 A \sin \left (c+\frac {3 d x}{2}\right )-10 C \sin \left (c+\frac {3 d x}{2}\right )\right )}{24 a^2 d} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^3*(9*C*d*x*Cos[(d*x)/2] + 9*C*d*x*Cos[c + (d*x)/2] + 3*C*d*x*Cos[c + (3*d*x)/2] + 3
*C*d*x*Cos[2*c + (3*d*x)/2] + 6*A*Sin[(d*x)/2] - 18*C*Sin[(d*x)/2] + 12*C*Sin[c + (d*x)/2] + 2*A*Sin[c + (3*d*
x)/2] - 10*C*Sin[c + (3*d*x)/2]))/(24*a^2*d)

Maple [A] (verified)

Time = 1.51 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.71

method result size
parallelrisch \(\frac {\left (A +C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (3 A -9 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+6 d x C}{6 a^{2} d}\) \(47\)
risch \(\frac {C x}{a^{2}}-\frac {2 i \left (6 C \,{\mathrm e}^{2 i \left (d x +c \right )}-3 A \,{\mathrm e}^{i \left (d x +c \right )}+9 C \,{\mathrm e}^{i \left (d x +c \right )}-A +5 C \right )}{3 d \,a^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{3}}\) \(73\)
derivativedivides \(\frac {\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}+\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +4 C \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{2}}\) \(74\)
default \(\frac {\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}+\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +4 C \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{2}}\) \(74\)
norman \(\frac {\frac {C x}{a}+\frac {C x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {2 C x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {\left (A -3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a d}+\frac {\left (A +C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a d}+\frac {\left (5 A -7 C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a d}+\frac {\left (7 A -17 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a d}}{a \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}\) \(158\)

[In]

int((A+C*cos(d*x+c)^2)/(a+cos(d*x+c)*a)^2,x,method=_RETURNVERBOSE)

[Out]

1/6*((A+C)*tan(1/2*d*x+1/2*c)^3+(3*A-9*C)*tan(1/2*d*x+1/2*c)+6*d*x*C)/a^2/d

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.38 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {3 \, C d x \cos \left (d x + c\right )^{2} + 6 \, C d x \cos \left (d x + c\right ) + 3 \, C d x + {\left ({\left (A - 5 \, C\right )} \cos \left (d x + c\right ) + 2 \, A - 4 \, C\right )} \sin \left (d x + c\right )}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/3*(3*C*d*x*cos(d*x + c)^2 + 6*C*d*x*cos(d*x + c) + 3*C*d*x + ((A - 5*C)*cos(d*x + c) + 2*A - 4*C)*sin(d*x +
c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

Sympy [A] (verification not implemented)

Time = 0.62 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.58 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\begin {cases} \frac {A \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6 a^{2} d} + \frac {A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a^{2} d} + \frac {C x}{a^{2}} + \frac {C \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6 a^{2} d} - \frac {3 C \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a^{2} d} & \text {for}\: d \neq 0 \\\frac {x \left (A + C \cos ^{2}{\left (c \right )}\right )}{\left (a \cos {\left (c \right )} + a\right )^{2}} & \text {otherwise} \end {cases} \]

[In]

integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**2,x)

[Out]

Piecewise((A*tan(c/2 + d*x/2)**3/(6*a**2*d) + A*tan(c/2 + d*x/2)/(2*a**2*d) + C*x/a**2 + C*tan(c/2 + d*x/2)**3
/(6*a**2*d) - 3*C*tan(c/2 + d*x/2)/(2*a**2*d), Ne(d, 0)), (x*(A + C*cos(c)**2)/(a*cos(c) + a)**2, True))

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.80 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {C {\left (\frac {\frac {9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {12 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}\right )} - \frac {A {\left (\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2}}}{6 \, d} \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*(C*((9*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 12*arctan(sin(d*x + c
)/(cos(d*x + c) + 1))/a^2) - A*(3*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2)/
d

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.27 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\frac {6 \, {\left (d x + c\right )} C}{a^{2}} + \frac {A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + C a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 9 \, C a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(6*(d*x + c)*C/a^2 + (A*a^4*tan(1/2*d*x + 1/2*c)^3 + C*a^4*tan(1/2*d*x + 1/2*c)^3 + 3*A*a^4*tan(1/2*d*x +
1/2*c) - 9*C*a^4*tan(1/2*d*x + 1/2*c))/a^6)/d

Mupad [B] (verification not implemented)

Time = 1.11 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.97 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {3\,A\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-9\,C\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+A\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+C\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+6\,C\,d\,x}{6\,a^2\,d} \]

[In]

int((A + C*cos(c + d*x)^2)/(a + a*cos(c + d*x))^2,x)

[Out]

(3*A*tan(c/2 + (d*x)/2) - 9*C*tan(c/2 + (d*x)/2) + A*tan(c/2 + (d*x)/2)^3 + C*tan(c/2 + (d*x)/2)^3 + 6*C*d*x)/
(6*a^2*d)